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Abstract

We present an iterative technique in which model check-
ing and static analysis are combined to verify large software
systems. The role of the static analysis is to compute partial
order information which the model checker uses to reduce
the state space. During exploration, the model checker also
computes aliasing information that it gives to the static an-
alyzer which can then refine its analysis. The result of this
refined analysis is then fed back to the model checker which
updates its partial order reduction. At each step of this it-
erative process, the static analysis computes optimistic in-
formation which results in an unsafe reduction of the state
space. However, we show that the process converges 1o a
fixed point at which time the partial order information is
safe and the whole state space is explored.

1 Introduction

In industrial settings, software verification consists al-
most entirely of testing. Formal analysis, be it based on
static analysis or model checking, is not considered practi-
cal for software applications. Fortunately, this situation is
slowly changing and more resources are devoted to improv-
ing the practicality of such analysis tools. For example, the
Java PathFinder (JPF) model checker has been applied to
the verification of critical avionics software [2, 11, 13].

JPF is a model checker which operates on principles sim-
ilar to the SPIN model checker [7], i.e., given a closed envi-
ronment for software, it performs a systematic exploration
of the state space of the program by executing it. Therefore,
JPF has to deal with issues such as generating an environ-
ment to close a system, deriving finite models from infinite
state spaces, and curbing the state explosion problem (so
that exhaustive exploration can be performed). This work
focuses on alleviating the state explosion problem (i.e., the
model checker runs out of memory before it can explore the
whole state space) by using partial order reduction, which
eliminates the exploration of redundant paths due to the in-
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terl-aving of independent transitions.

JPF relies on abstraction and static analysis to reduce
the size of state spaces. Abstraction is used prior to model
checking; it generates a smaller program (meaning that it
yiel.Is a smaller state space than the original program) that
is a safe (it preserves the behaviors that are relevant to the
proj erty under consideration) approximation of the original
program. Static analysis is also used prior to model check-
ing 1o slice the original program [6] (yielding a smaller, safe
program), and also, compute information needed to perform
partial order reduction during model checking. JPF has the
follc wing important (for this work) characteristics:

e it is an explicit-state model checker for Java programs,
i.e., it uses a custom Java virtual machine to explore

states in a DFS manner and verify properties;

e it prunes on-the-fly the state space using partial order
reduction on safe transitions;

e it relies on static analysis to compute safe transitions.

This paper focuses on partial order reduction, and the
interictions between static analysis and model checking.
Sincc static analysis is used prior to model checking, partial
order analysis is subject to the following limitations of static
analysis: no knowledge of the values taken by variables at
run t:me (even though we make limited use of symbolic
evalt ition through the Bandera toolset [4]), approximations
inher:nt to using the traditional dataflow framework (e.g.,
widening or k-limiting), and, the fact that the precision of
static analysis is directly conditioned by the precision of its
aliasing algorithm. Unfortunately, most practical alias anal-
yses : re quite imprecise. JPF however can compute precise
aliasing since it explores the state space by executing the
progr.m under all possible interleavings. Therefore, our
drivirg idea is to research how we can interface the static
analy -er and the model checker so that we can take advan-
tage of one’s strengths to cancel the other’s weaknesses.

In this paper, we show that the static analyzer and the
mode! checker can operate concurrently and reduce signif-
icantl - the size of the explored state space. The static an-



alyzer can use dynamic information (i.e., alias sets) com-
puted by JPF during state exploration and statically com-
pute partial order information that JPF can use to prune the
state space. The aliasing information given to the static an-
alyzer is a subset of the real alias set; therefore, static anal-
ysis may produce incorrect information about safe state-
ment which JPF cannot trust to definitely discard execution
paths. However, this information can be used to pick paths
(that are not discarded by the current partial order infor-
mation) during state exploration. As JPF covers more of
the state space, it computes a safer alias set (i.e., closer to
the real alias set), and in turn, the partial order information
computed by the static analyzer is safer (i.e., more relevant
paths get included in the exploration). Eventually, this iter-
ative analysis reaches a fixed point (the alias set is the com-
plete alias set for the current environment), and, the model
checker knows exactly what paths can safely be discarded.
The innovativeness of our work is twofold:

1. we use static analysis and model checking concur-
rently to increase their precision, and

2. we perform a safe analysis by computing (less and
less) unsafe information.

The paper is organized as follows. Section 2 describes
static analysis and partial order reduction. In Section 3, we
formalize our approach and prove that it yields safe solu-
tions. We then describe an example, discuss some practical
considerations, and present our conclusions.

The rest of the paper uses the following notations. State-
ments (also referred to as transitions) are denoted by lower
case letters such as n, m, p, .. .. The set of all statements is
called T. The thread of execution for a given statement 7 is
given by 8(n). The state of the system is usually referenced
by the lower case letter s. The state reached from a state s
after statement n has been executed is denoted by n(s). The
set of all possible states is called S. The set enabled (s) rep-
resents the set of statements that can be executed at state s,
i.e., the transitions that are enabled in state s. For a given
statement 7, de f(n) (ref(n)) is the set of variables defined

(used) at n.
2 Static Analysis in JPF

Java PathFinder [2, 11, 13] is an explicit state model
checker that takes compiled Java programs (i.e., byte code
class-files) and analyzes all paths through the program
for deadlock, assertion violations and linear time temporal
logic (LTL) properties. JPF is built on a custom Java Virtual
Machine (JVM) and therefore does not require any transla-
tion to an existing model checker’s input notation. Since
JPF is custom-made for Java model checking, it allows an
aggressive attack on the state-explosion problem inherent in

mo st complex Java programs. Importantly, the JPF model
che zker has full control over which (Java) statements to ex-
ecute in every state, and moreover, has the complete state of
the JVM at its disposal at all times during execution. These
twc characteristics allows the implementation of the con-
cep's in this paper: partial-order reductions (only execute
cer ain transitions in each state) and calculation of alias in-
for:nation (present in the data-portion of the JVM state).

2.1 Partial Order Reduction

"o perform a correct verification of an asynchronous sys-
tem (in our case, a multi-threaded Java program), the model
che :ker has to explore all possible interleavings of concur-
ren: transitions (i.e., concurrent statements) in the system.
Uniortunately, the interleaving model yields a combinato-
rial explosion in the number of states that need to be ex-
plored. The goal of partial order reduction is to use the
con:mutativity of concurrent transitions to reduce the state
spa: e that needs to be explored by a model checker.

Tor example, a system consisting of two threads with
thre> transitions each, such that transitions in one thread
are ndependent from transitions in other threads, yields a
space consisting of 16 states and up to 20 different paths.
Hov ever, any such two paths differ by at most nine commu-
tatic ns of transitions (on different threads). If the property
chec ked by the model checker on this system is not sensi-
tive to those transitions, then the state space can be reduced
to o1ly one path, i.e., seven states.

/s described in [3], two transitions are independentif the
exec ution of one does not disable the other (and vice versa)
(encbledness condition) and they result in the same state re-
garc less of their execution order (commutativity condition).

Definition 1 two transitions n and m are independent at a
give 1 state s if the following two conditions are satisfied:

1. n,m € enabled(s) = n € enabled(m(s))
2. n,m € enabled(s) = n(m(s)) = m(n(s))

The e conditions define an independence relation between
pair: of transitions (statements) that is symmetric and anti-
refle cive. In [8], Holzmann and Peled extend this definition
of ir dependence with the concept of global independence.

Definition 2 Two transitions n and m are globally inde-
pencent if and only if they are independent in every state
whe ¢ they are simultaneously enabled.

Ve need two other conditions to perform path elimina-
tion 1sing independence. First, transitions have to be invis-
ible with respect to the checked property, i.e, its execution
fron. any state does not change the value of the proposi-
tion: | variables in the property. Second, eliminating a path



should not eliminate another path that branched out of one
of the intermediary states.

Partial order reduction is usually implemented using the
concept of ample sets. An ample set at state s (denoted
ample(s)) is a subset of enabled(s). When operating in
a partial order reduction mode, the model checker will ex-
plore only paths, from a given state, that start with transi-
tions in the ample set rather than the enabled set. In other
words, given a state s, partial order reduction results in
the elimination of all the paths starting with transitions in
enabled(s) \ ample(s). According to [3], the following
conditions yield a correct ample set (s is a given state):

CO0 ample(s) = @ & enabled(s) = O,

C1 along every path in the full state graph that starts at
s, the following condition holds: a transition that is
dependent on a transition in ample(s) cannot be exe-
cuted without a transition in ample(s) occurring first;

C2 if s is not fully expanded, then every transition in
ample(s) is invisible; and,

C3 a cycle is not allowed if it contains a state in which
some transition is enabled but is never included in
ample(s) for any state s on the cycle.

Note that C1 implies that the transitions in enabled(s) \
ample(s) are independent of those in ample(s).

Verifying condition C1 is as hard as checking reachabil-
ity for the full state space (see Theorem 11, page 154 of [3]).
Moreover, the full state space is not available when ample
sets are computed during on-the-fly model checking as it
is the case in JPF. Therefore, practical implementations of
partial order reduction need to use conditions that are easier
to check, even if they yield less reduction {3].

JPF relies on another concept based on safe transitions
[8]. In essence, a transition is safe if it is independent on
any transition of any other thread. A partial order reduction
scheme that uses only safe transitions in the ample set is
guaranteed to yield correct results.

Definition 3 Given a property P, statement . is safe if it is
invisible with respect to P and globally independent from
any m such that §(n) # 6(m).

Practically, at any given state s, JPF looks for a safe transi-
tion in enabled(s) (the set of enabled transitions at s). If it
finds a safe transition, say t, JPF executes it and explores the
graph it creates. During backtracking, TPF ignores the paths
originated in the other transitions (enabled(s) \ {¢}). If it
does not find any safe transition in the enabled set, all transi-
tions are explored. In other words, the ample set (ample(s))
is either the full enabled set (enabled(s)) or a singleton con-
taining one of the safe transitions in enabled(s). Contrary
to SPIN, JPF relies on a static analyzer to perform the de-
pendence analysis needed to identify safe statements.

2... Static Analysis

This section describes how JPF uses static analysis to
cornpute partial order information. We designed our analy-
sis based on the dependences defined in the Bandera toolset
[4] Hatcliff et al. defined six types of dependences [6].
Th 're are three intra-thread dependences which are usually
found in sequential programs, namely: data, control and
div »rgence dependences. Since these dependences relate
sta ements within the same thread, they cannot be used to
ide 1tify independent statements (see page 157 of {3]).

Jatcliff er al. also define three types of dependences
(in erference, synchronization, and ready dependences) that
cay ture concurrency issues. The interference dependence
cag tures the fact that shared variables can escape the scope
of 1 given thread. We give the formal definition of inter-
fer-nce dependence because it is useful when it comes to
corputing partial order information.

Deiinition 4 A statement n is interference-dependent on a
sta ement m if

1 0(n) # 6(m), and
2 def(m)nref(n) # Q.

Noe that def(m) and re f (n) need to take into account the
posible presence of aliases. Second, it is obvious that, if
n i interference-dependent on m, then n and m are not
glohally independent (they do not commute) with respect
to | artial order reduction. So, computing interference de-
pen lences gives important information about independence
wit!: regard to partial order reduction. However, interfer-
enc : dependence is not quite restrictive enough to identify
safe statements. Therefore, we take a conservative approach
and consider that any statement defining or using (possibly
via 1n alias) a shared variable is unsafe. Our problem then
bec imes analyzing statically a program to identify shared
vari ibles. This requires alias analysis.

Foth the synchronization and ready dependence are ir-
rele ant to our discussion on partial order reduction. Syn-
chri nization dependence exists to make sure that the mon-
itor. enclosing a statement that is in the slice are also in
the :lice. Since the statements involved in synchronization
are n the same thread, they are already considered depen-
den: with regard to partial order reduction, and we do not
nee:! to compute if statements are synchronization depen-
den . The ready dependence states that a statement n is
reacy-dependent on a statement m if m’s failure to com-
plet: can make 8(n) block before reaching or completing
n. £ ccording to this definition, the execution of m does not
disa »le n; quite the contrary, it enables n. Therefore, ready
dependence is irrelevant to the notion of dependence with
regzrd to partial order reduction.



If neither synchronization nor ready dependences are
useful to provide information about independence with re-
gard to partial order reduction, we still need to study the
synchronization means in Java and analyze their impact on
statement independence. For that, we take a closer look
at the synchronization commands identified in [6]: namely,
enter-monitor, exit-monitor, wait, notify, and notify-all. The
first command (enter-monitor) is the only one that can dis-
able statements on different threads. Indeed, the execution
of enter-monitor prevents other threads to access the lock,
potentially disabling transitions on those threads (note that
it disables only statements that are attempting to acquire the
same lock; once again it is a shared object problem). The
exit-monitor, notify, and notify-all commands release locks;
therefore, without considering possible exception problems,
these commands do not disable other statements; they rather
enable some. Finally, the wait command does block the ex-
ecution of some statements, but only on the same thread,
which means that it can block only statements that have al-
ready been deemed dependent; therefore, we do not need to
pay special attention to waif commands.

The static analyzer does not really compute what state-
ments are safe. It identifies unsafe statements, and then
mark the other statements as safe. Here is the formal defi-
nition of an unsafe statement:

Theorem 1 A statement n is unsafe if
1. nis interference dependent on any other statement,
2. n is an enter-monitor statement, or
3. nis an invoke statement on a synchronized method.

Conditions 2 and 3 are stronger that they need to be. An
enter-monitor statement is unsafe only if there is another
enter-monitor statement on another thread attempting to
grab the same lock. Condition 2 takes a conservative ap-
proach and mark any enter-monitor statement as unsafe.
Similarly, condition 3 takes a conservative approach by
marking all invocations of synchronized methods as unsafe.

2.3 Implementation

Partial order reduction is performed on-the-fly by JPF
based on information computed by the static analyzer. As
illustrated in Figure 1, in the current implementation, static
analysis is done before model checking. The static analyzer
identifies a set of safe statements, which JPF uses to elim-
inate redundant paths. The static analyzer is run only once
(before any run of the model checker) and therefore it pro-
vides conservative results; it only computes a subset of the
ideal set of safe statements. This guarantees that all inter-
leavings that can affect the result of the verification process
are explored by JPE The precision of the analysis directly

aff :cts the number of paths that JPF can ignore. Therefore,
apj roximations made by the static analyzer have a direct
impact on the leve! of reduction achieved by JPF.
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Figure 1. One-time partial order reduction.

I’artial order analysis depends on aliasing and call graph
anayses; hence, it suffers from the approximation intro-
duc-d by those analyses. Unfortunately, aliasing analysis is
a ccmplex problem [10]. For example, it has problems han-
dlin 1 possibly infinite data structures. Practical algorithms
rely on k-limiting schemes that differentiate aliases in lists
onls up to a depth of k [10]. Moreover, scalable algorithms
typi:;ally do not differentiate between different calling con-
text: [1, 12]. This leads us to believe that only limited par-
tial rrder reduction can be achieved by using static analysis
as a pre-processing step.

(ur driving principle is based on two observations. First,
JPF :an compute precise aliasing (and call graph) informa-
tion while the static analyzer can only compute approxi-
matc aliasing information. Therefore, JPF should be the one
com Huting the aliasing information. Second, JPF lacks a
glotal view of the synchronization in the system; it usually
considers only one path of execution at a time and it does
not rzalize the synchronization problems until it bumps into
then . The static analyzer has a more abstract view of the
system, and given the proper aliasing information, it does
a go)d job at computing partial order information. There-
fore. it should be the one computing the independence sets.
Ther :fore, it seems that, by working on different aspects of
the problem, they could help each other and do a better job
than they do now. This paradigm is illustrated in Figure 2.

E 'a_Pg_I yields
Palnll

parses enables pruning
T

(Stat ¢ Analyzer compute Model Checker
A
uses @computes

Figure 2. lterative partial order reduction.
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Theoretically, this paradigm is attractive, but, practically,
it seems to be only realizable at the expense of safety (i.e.,



the verification is optimistic and does not offer guarantees
even if it terminates). Indeed, JPF can only compute par-
tial alias sets as it explores the state space. Only when
it has completely explored the state space can it compute
precise alias sets. Therefore, it seems that, in our scheme,
static analysis would always be based on unsafe alias sets,
and hence, produce only overly optimistic sets of safe state-
ments. This implies that JPF could potentially ignore rel-
evant paths, and therefore, miss some errors. Fortunately,
this is not so as we prove in the next section.

At each new iteration, JPF adds new aliases to the
alias sets it computed during previous iterations. These
new aliases may lead the static analyzer to re-classify safe
statements as unsafe (but never unsafe statements as safe).
Therefore, at each new iteration, the set of safe statements is
a subset of the safe statements at previous iterations. Each
time a statement is re-classified from safe to unsafe, it forces
JPF to consider additional paths. The iteration process starts
with no alias sets (or one resulting from a must-alias anal-
ysis) and optimistic sets of safe statements. The process
goes on until JPF has safely identified all the aliases in the
program. At that point, JPF gives an exact alias set to the
static analyzer, which in turn can compute an exact set of
safe statements. That set is then used by JPF to identify

exactly all the relevant remaining paths. The overall verifi-

cation process then finishes once JPF has covered all rele-
vant paths. All of this is valid because JPF never completely
discards a path until the whole verification process is over.

The innovative aspect of our method is that it performs
an overall safe analysis out of iterative unsafe analysis steps.
Moreover if no approximations are introduced by the static
analyzer when computing the set of safe statements, then it
results in an optimal reduction of the state space. The state
spaces explored by JPF during each iteration (besides the
last one) are only partial state spaces. Therefore, stopping
at these stages could yield incorrect results. The overall
process converges towards an optimal (in terms of partial
order reduction) state space.

In the next section, we describe a framework that formal-
izes this approach. We then use it to prove the correctness
of this approach. In particular, we prove that the iteration
process cannot falsely detect that an alias set is complete
(which could cause an early termination of the state explo-
ration and hence yield incorrect results).

3 Formal Framework

3.1 Aliasing

In this section, we define aliasing and establish results on
the alias analysis done by JPF. Formally, an alias at program
pointt is a pair (u, v) of references ((u,v) € R? where R is
the set of references in the program) that point to the same

sto e location. In other words, u and v give access to the
sarie object. We can represent all aliases in a program as a
maoping of program points to alias sets as follows:

A: T — 2BxR
t ~ {(u,v) € R}

whore A(t) represents the set of aliases holding at program
poiat t. We define A as the set of all possible alias mapping
for a given program. In the rest of the paper, we will refer
to .1 € A as the alias set of the program. We also define a
natral partial order on A as follows:
V(4,B)e A: AC B« (VteT: A(t) C B(t)).

In he presence of dynamic information about finite pro-
grams, A is finite. The number of references is bounded,
and therefore, there is a finite number of alias combinations.

We assume that at any given time during the analysis, we
can determine the set of states S that have been explored by
JPE We also assume that JPF can reliably compute the set
of cliases holding at any given state. Let f, (fo : § = A)
be the function that allows JPF to extract aliases from a set
of explored states. Thus,

falS =4
where S¢ is the set of explored states and A is the set of

aliaes for the current set of explored states. It is obvious
that f, is monotonically increasing.

V(X,Y) ES2ZXQY=>fa(X)§fa(Y) (1)
Ind. ed, exploring more states does not eliminate aliases, it
only adds more aliases.

3.2 Safe Statement Analysis

V/e assume that the static analyzer has a consistent
means of computing the set of safe statements given an alias
set. Let fs (fs : A — T) be such a function. Thus,

fs(4) =1
whe ‘¢ A is the current set of aliases in the program and I is

the : et of safe (independent) statements that can be inferred
give1 A. Obviously, f, is monotonically decreasing.

V(X’Y)EA2:XQY:fs(Y)ng(X) 2)

Add ng an alias may create a new dependence among state-
mens, but it does not remove any. Therefore, it can only
char ge a safe statement into an unsafe statement and can
never change an unsafe statement into a safe statement.

F irthermore, let f, be the function (f, : T — S) that,
given a set I of safe statements, can compute the largest set
of siates SM = f,.(I) that can be explored by JPFE. It is
obvi »us that, at any given time, the set of state explored by
JPF say S¢)is a subset of SM,

secsSMcs



3.3 Fixed Point Analysis

The analysis uses an iterative process which sees the
static analyzer compute independence sets and JPF bounds
on state exploration and alias sets. The process goes as fol-
lows (note: indices relate to iterations):

1. given an alias set A_;, the static analyzer computes
an independence set I; = f;(Ag—1) while JPF is ex-
ploring a confined state space (Sf_; C Sp’,);

2. then JPF uses I to limit its exploration to a new con-
fined state space (SM = f,(Ix)) by performing partial
order reduction;

3. JPF computes a set of aliases Ay given the state space
S¢ it has explored (A = fo(S§) and 5§ C S,i”);

4. the process goes back to Step 1 unless a fixed point has
been reached (A1 = Ag).

To show that a fixed point is reached, we define C =
(A xT xS x.S) where any ¢ € C consists of an alias
set, a set of safe statements, and confined and explored state
spaces. We also define a partial order relation C over C:

Ve = (A, [, SM,8¢),¢0 = (A2, 1,537,85) € C:
cp e &
(A1 C A2) A (L D L) A (S C ) A(SE C S5)
The fact that C defines a partial order derives directly from

the fact that C is a partial order relation. Therefore, (C,C)
is a partial ordered set (or poset). It is also easy to show that

Lemma 1 (C,C) is a complete lattice.

Proof: First, note that C is finite because T, S, and A are
finite. Therefore, we only have to show that the supremal
(supY)ofasetY C C isin C (and similarly for the infimal
of Y, inf V). This is trivial since supC = (4,9,5,5) € C
andinf C = (8,7, 8,0) € C.

|

We now define a function f (f : C — () that summa-
rizes the effects of an iteration. Thus,

Ve=(4,1,8M,5% ¢ C:
f(e) = (g0 fa(S%), £s(A), fs 0 fr(A), 5°)

Itis also trivial to show that, for any iteration k,
(Ak, I, SP1,85) = F((Ak-1, k1, S¢1, 55 1))
and that, using (1) and (2), f is monotonically “increasing”.
Y(c1,e2) € C:c1 Cep = flen) C flez) 3

Therefore, we can show that

Tteorem 2 f has a supremal fixed point
Proof: All we have to show is that
» f is a monotone function (see (3))

w f is defined over a complete lattice (C, C) (see Lemma
1). Then, according to Theorem 2.1 in [9], f admits a
supremal fixed point.

At his point, we have shown that our iterative verification
process will converge to a fixed point. We still have to show
tha this fixed point corresponds to a correct analysis.

Theorem 3 After termination of the iterative process, all
relc vant paths have been explored.

Prcof: Let P(S) be the set of paths in the full state space S.
Let P(S4) be the set of paths in the explored states space.
Let T be the set of all possible transitions. Let s(p) be a
funtion that returns the final state of a path p.

/ssume that there exist paths that should have been ex-
ploscd but have been discarded by JPF based on the partial
ordet information given by the static analyzer. Let p be the
first such path that could have been encountered by JPE.

p € P(S)\ P(Sa).

Let o' € P(S4) be the explored path that “caused” p to
be ciscarded. Then, there exist two transitions ¢ and ¢’ and

thre : sub-paths py, p2, and p, such that
® p=p1.t.py,
o p' =pi.t'py,
e t,t' C enable(s(p;)), and
o t' was misclassified as safe.

If ¢ snot safe, then either ¢' is visible by the property being
checked or it is not globally independent.

It is not possible for ' to be visible by the property be-
caus: it would imply that an alias at ¢’ had been missed even
thoush ¢’ was executed by JPF; this violates the assumption
that . lias discovery on states visited by JPF is correct.

Thaen, t' must not be globally independent. Moreover,
since p should have been explored, it means that ¢t and ¢’ are
not i1dependent at state s(pl). This implies that ¢ and ¢'
acce: s a shared variable (or lock) through aliases and that at
least one of these aliases is never uncovered during the anal-
ysis. However, such aliases result from the execution of the
last t ansition in p; (i.e., the transition preceeding ¢ in p and
t in ;). Since JPF has executed that transition, these aliases
woul 1 have been found by JPF (again, using the assump-
tion that alias discovery on states visited by JPF is correct).



Therefore, there are no aliases accessing a shared variable
from ¢ and t', and ¢’ is globally independent.

Therefore, p was rightly discarded by JPF. We can repeat
this reasoning for every (wrongly discarded) path and prove
that all the relevant paths have been explored by JPF.

4 Example

The example in Figure 3 is a simple multi-threaded pro-
gram that exhibits a subtle deadlock due to incorrect initial-
ization of variables. Essentially the deadlock is due to the
count variables in Task] and Task2 not being initialized to
zero - the important statements that would need to be inter-
leaved in order to find this error are the assignments to the
count variables just prior to the while loop in each thread
(i.e., statements labeled ©; and uz in Figure 3.

class Event {
int count = 0;
synchronized void
wait_for_event(int rcount) {

class Main {
static void main(String[] args) {
Event new._ev] = new Event();
Event new.ev2 = new Event(};

Task] taskl = if (rcount == count)
new Taskl{new._evl,new_ev2); try {wait();}

Task2 task2 = catch(InterruptedException e){ };
new Task2(new_evl,new.ev2);

task1.start(); synchronized void signal_event() {

task2.start(}; count = (count + 1} % 3;

} notify All();
}

}

class Task2 extends Thread {
Event eventl,event2;
int count = 0;
Task2(Event el, Event 2} {
this.eventl =el;

class Taskl extends Thread {
Event eventl,event2;
int count = 0;
Task1(Event el, Event e2) {
this.eventl =el;

this.event2 = e2; this.event2 = e2;
this.start(); this.start();
} }
void run() { void un() {
uy: count = eventl.count; up: count = event2.count;
while(true) { while(true) {

eventl.signal_event();
event2. wait_for.event(count);
count = event2.count;

event].wait_for_event{count);
count = eventl.count;
event2.signal_event();

} }

Figure 3. Java program with deadlock.

During the first iteration, the static analyzer does not
have any aliasing information. Let us examine the class
Taskl. Even though the analyzer can determine that
the fields eventl and event2 are probably aliased to ob-
jects on different threads, it has no concrete proof that it
is happening (because it has no alias information at this
point). Therefore, the analyzer has no choice but to mark
all the statements dealing with those variables as safe, ex-
cept for the statements invoking the synchronized methods
wait_for event and signal_event. In these cases, the an-
alyzer can infer that these invocations will ask for locks

(ev 2n though it does not know which locks) and we mark
such calls as unsafe (without checking what object is used
as 1 lock). A similar analysis is done for the class T'ask2.
All statements in class Event are marked as safe (and will
rer ain so since no aliases can be generated in the Fvent
cla s). All statements in class Main are marked as safe.

During the first exploration done by JPF, the follow-
ing aliases (among others) will be uncovered. The refer-
ences Main.new_evl, Taskl.eventl, and Task2.eventl
wil: be aliased when taskl and task2 start running. Sim-
ilar y, the references Main.new_ev2, Taskl.event2, and
Ta :k2.event2 will be aliased when taskl and task2 start
run 1ing. Since the statements u; and u (in bold in the fig-
ure have been marked as safe, they are not interleaved and
JPF does not find the deadlock. Still, JPF passes important
alia s information to the static analyzer.

During the second iteration, some alias information, in-
clud'ing the aliases concerning the fields event1 and event2
in toth Taskl and Task2 will be known to the static ana-
lyzcr. Using this information, the analyzer can now mark
as unsafe any statement accessing the fields eventl and
eve 1t2 in both T'ask1 and T'ask?2 (including statements u;
and us). This results in only one safe statement in each of
the ‘hread: the condition of the while loops.

"'his new information is then communicated to JPF
whi h realizes it needs to take into account some additional
inte-leaving. This results in JPF interleaving statements u;
and u, and in the deadlock being found.

no p.o.L. p.-O.L. p.or
u, ug safe | wui, us unsafe
States 866 339 432
Transitions 1489 459 632
deadlock found not found found

Figure 4. State space reduction figures.

T 1ble 4 shows the results of running JPF without partial
order reduction and with different information about safe
state ments. Column 1 shows the results when JPF does not
use my partial order reduction. Column 2 shows the re-
sults obtained by JPF with partial order reduction using an
over y optimistic set of safe statements. Column 3 shows
the 1 :sults obtained by JPF with partial order reduction us-
ing . correct set of safe statements. Since the example is
quite small, JPF can find the deadlock without partial or-
der :eduction, but, to do so, it has to visit twice as many
states as when it performs partial order reduction with the
corrcct safe statements. When the information about safe
state nents is incorrect (as in the first iteration) the deadlock
is nct found. But the discovery of aliases by JPF leads to a
correct set of safe statements, and, JPF eventually finds the
deadiock after visiting roughly 100 more states.



5 Practical Considerations

Our technique relies on the fact that JPF always finishes
the exploration of a graph once it has started it. This is
not true in general either; explicit state mode! checkers of-
ten run out of memory before they can finish exploring the
whole space. If it is the case, our iterative technique will
perform an unsafe analysis. However, in its normal pro-
cessing mode, JPF would have run out of memory anyway.
So, the result of its analysis would be unsafe too. Therefore,
our method does not do worse than the normal processing
mode. We might even argue that it would cover a “more
relevant” state space before it runs out of memory.

A final important consideration is the fact that JPE, as
most explicit-state model checkers, stops at the first error
it finds and returns with an error trace (in JPF’s case, a
full execution trace). Therefore, by constraining the model
checker to stay within a confined state space (at each itera-
tion), we restrict the possibility of the model checker to get
lost in some uninteresting part of the state space. It would
be interesting to extend the static analysis so that the model
checker is guided towards critical areas first.

6 Conclusion

We have described an iterative process to perform soft-
ware verification using static analysis and explicit-state
model checking. Static analysis identifies safe statements
which are used by the model checker to perform partial or-
der reduction (thus increasing the chances of exhaustive ex-
ploration). The model checker performs state exploration
(using partial order reduction) and computes precise alias
sets used by the static analyzer to identify safe statements.
This work is innovative for the following reasons.

e It describes a framework where static analysis and
model checking work concurrently to improve the cov-
erage and the precision of software verification; we are
aware of only one other work [5] using model check-
ing and static analysis concurrently; but it is based on
abstract interpretation and abstract model checking.

o It describes an iterative process that computes unsafe
intermediate results until it converges to a safe result;
traditional research ideas in static analysis and explicit-
state model checking try to improve on safe solutions
by reducing the impact of the approximations.

o This method yields a solution that is much closer to the
optimal solution (both in terms of aliasing and partial
order reduction) than traditional methods.

However, we pay the price of losing some of the generality
in the results of the static analysis. Since we incorporate dy-
namic information, the results of the static analysis cannot

be re-used for different inputs (environment) of a program
as it was the case in the traditional linear process.

Our future plans are to improve the current implementa-
tic 1, to experiment with this technique on many more Java
pri grams, and to define a rationale for the duration of the
ite. ation steps. Future improvements include the use of on-
deinand (or compositional) algorithms in the static analysis.
We expect that, as we experiment with other Java programs,
we might have to refine the distribution of work between
the static analyzer and the model checker. We will also con-
sid::r other types of interactions between the model checker
anc the static analyzer, and possibly other techniques.
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